AVL Trees

Κ08 Δομές Δεδομένων και Τεχνικές ΠρογραμματισμούΚώστας Χατζηκοκολάκης

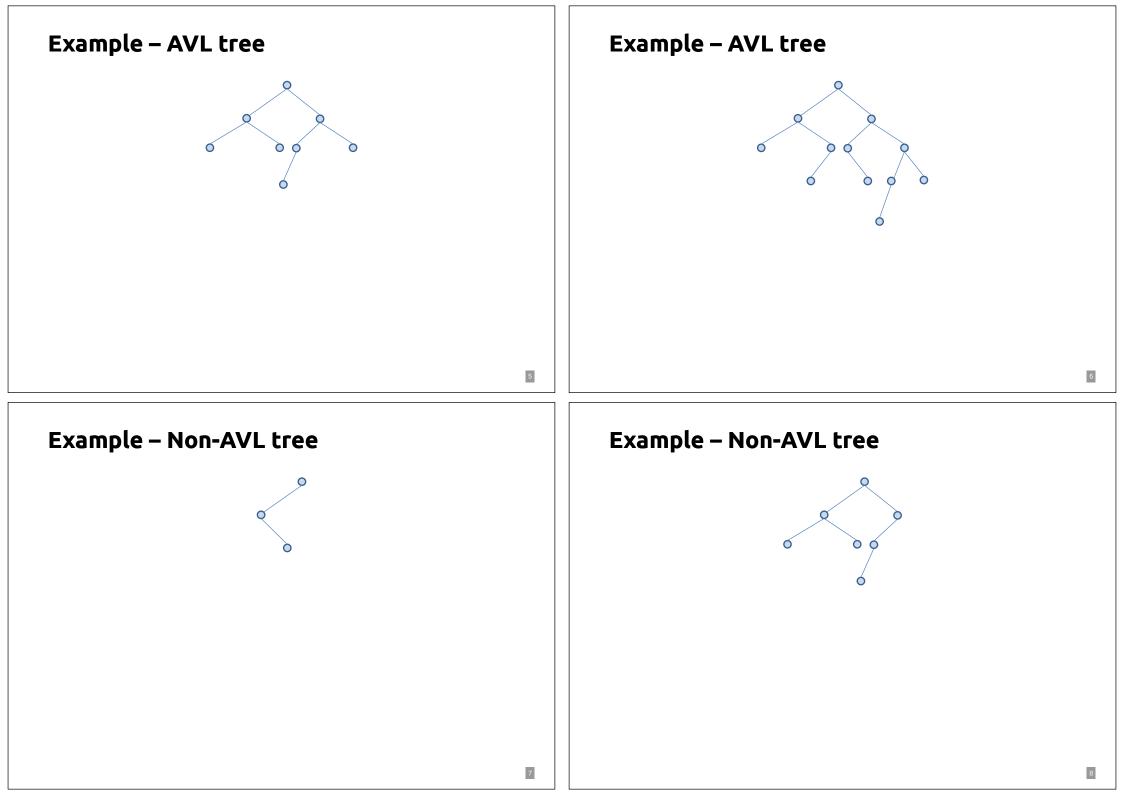
Balanced trees

- We saw that most of the algorithms in BSTs are O(h)
 - But h=O(n) in the worst-case
- So it makes sense to keep trees "balanced"
 - Many different ways to define what "balanced" means
 - In all of them: $h = O(\log n)$
- Eg. **complete** are one type of balanced tree (see Heaps)
 - But it's hard to maintain both BST and complete properties together
- **AVL**: a different type of balanced trees

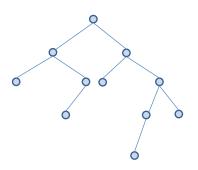
AVL Trees

- An AVL tree is a BST with an extra property:
 - For all nodes: $|\text{height}(\text{left-subtree}) \text{height}(\text{right-subtree})| \le 1$
- In other words, no subtree can be much shorter/taller than the other
- Recall: **height** is the longest path from the root to some leaf
 - tree with only a root: height 0
 - empty tree: height -1
- Named after Russian mathematicians Adelson-Velskii and Landis

Example – AVL tree



Example - Non AVL tree



The desired property

- In an AVL tree: $h = O(\log n)$
 - Proving this is not hard
- n(h): **minimum number of nodes** of an AVL tree with height h
- We show that $h \leq 2 \log n(h)$
 - by **induction on** h
 - induction works very well on recursive structures!
- The base cases hold trivially (why?)
 - -n(0)=1
 - -n(1)=2

9

The desired property

- Inductive step
 - Assume $rac{h}{2} \leq \log n(h)$ for all h < k
 - Show that it holds for an AVL tree of height $h=k\,$
- **Both subtrees** of the root have height at least h-2
 - because of the AVL property!
 - $-\operatorname{So} n(k) \ge 2n(k-2) \tag{1}$
- Induction hypothesis for h=k-2
 - $-\frac{k-2}{2} \le \log n(k-2)$
- From (1) we take \log on both sides and apply the ind. hypothesis
 - $-\log n(k) \geq 1 + \log n(k-2) \geq 1 + rac{k-2}{2} = rac{k}{2}$

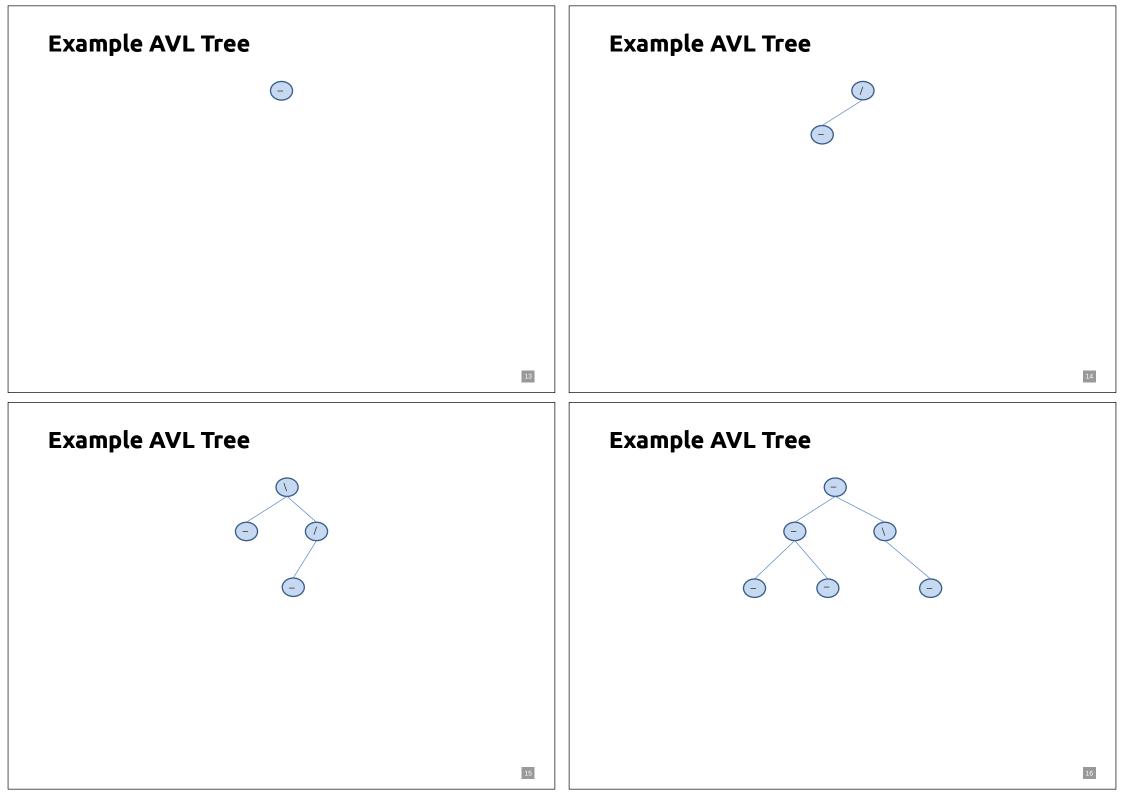
Balance factor

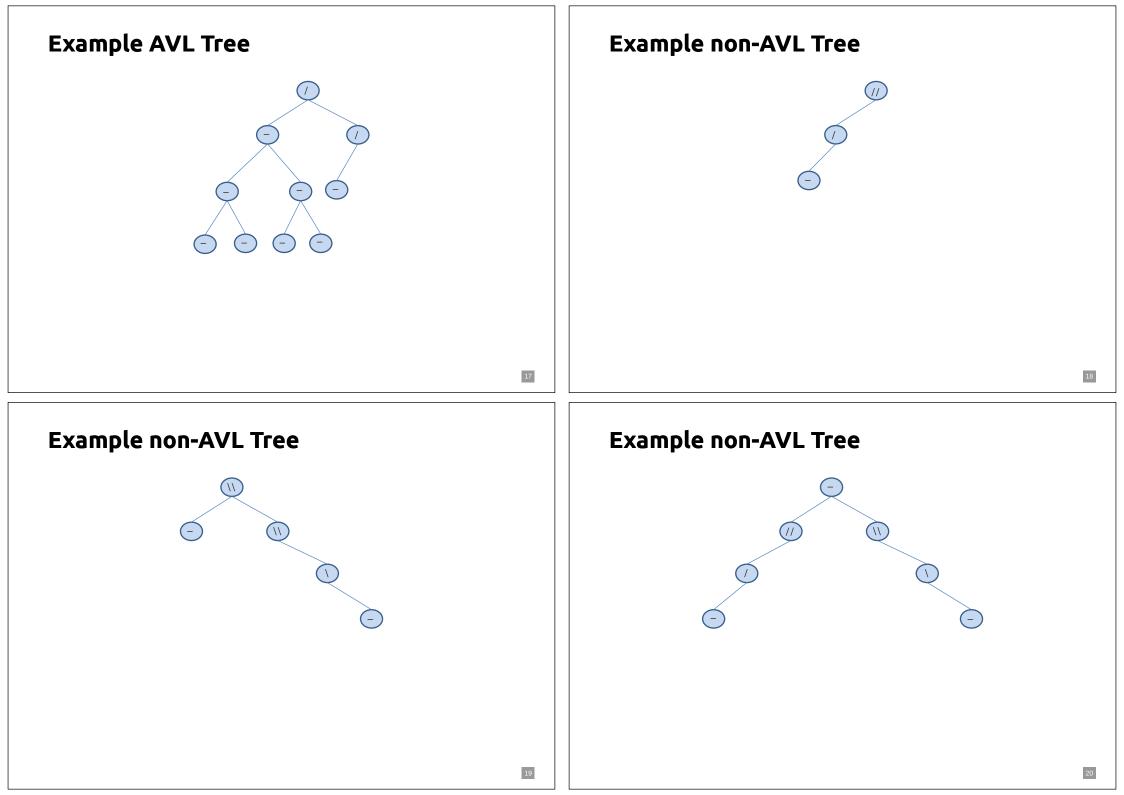
A node can have one of the following "balance factors"

Balance f	actor	Meaning
-		Sub-trees have equal heights
/		Left sub-tree is $1\mathrm{higher}$
//		Left sub-tree is >1 higher
\		Right sub-tree is 1 higher
\\		Right sub-tree is >1 higher

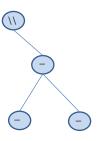
Nodes -, /, \ are AVL.

Nodes //, \\ are not AVL.





Example non-AVL Tree



Operations in an AVL Tree

- Same as those of a BST
- Except that we need to **restore** the AVL property
 - after **inserting** a node
 - or **deleting** a node
- We do this using **rotations**

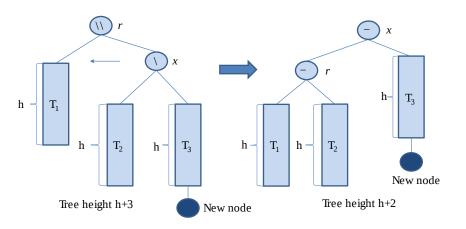
Recursive AVL restore

- Restoring the AVL property is a **recursive** operation
- It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are **unwinding** towards the root
- So when we restore a node r, its **children** are already restored **AVL trees**

AVL restore after insert

- Assume r became $\backslash \backslash$ after an insert (the case // is symmetric)
- ullet Let x be the **root** of the **right subtree**
 - The new value was inserted under x (since r is $\setminus \setminus$)
- What can be the **balance factor** of x?
 - \\ and // are not possible since the child x is **already restored**
- Case 1: x is \setminus
 - A **left-rotation** on r restores the property!
 - Both r and x become (easily seen in a drawing)

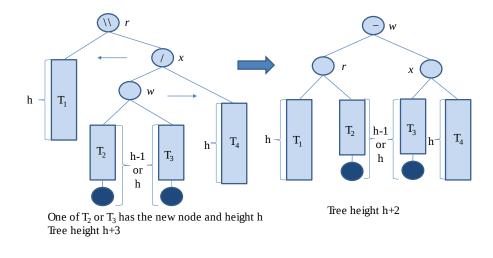
Insert: single left rotation at r



AVL restore after insert

- Case 2: x is /
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become //
- We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r
- The left-child w of x becomes the new root
 - w becomes -
 - r becomes or /
 - x becomes or \

Insert: double right-left rotation at ${\bf x}$ and ${\bf r}$



AVL restore after insert

Case 3: x is -

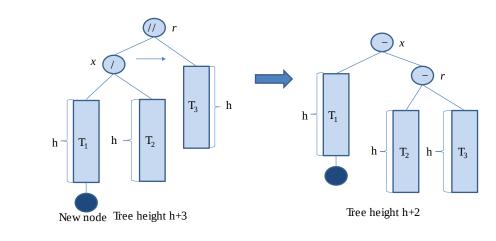
25

- This in fact cannot happen!
 - Assume both subtrees of x have height h
 - Then the left subtree of r also must have height (h)
 - Otherwise AVL would be violated **before** the insert (see the drawings)

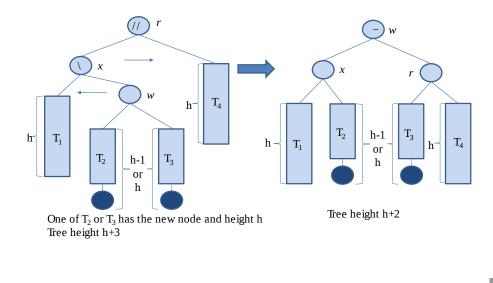
Symmetric case

- The case when x becomes // is **symmetric**
- ullet We need to consider the BF of its **left-child** x
 - x is / : we do a **single right** rotation at r
 - x is $\overline{\ }$: we do a **double left-right** rotation at x and r
 - x is -: impossible

Insert: single right rotation at r



Insert: double left-right rotation at ${\bf x}$ and ${\bf r}$



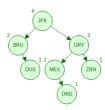
Insert example

29

30

Insert example Insert example Inserting BRU, causes single right-rotate at ORY Inserting DUS Insert example Insert example Inserting ZRH Inserting MEX

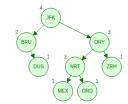
Insert example



Inserting ORD

Insert example

32

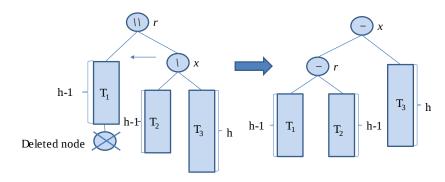


Inserting NRT, causes double right-left rotation at ORD and MEX

AVL restore after delete

- Assume r became $\backslash \backslash$ after delete (the case // is symmetric)
- Let \boldsymbol{x} be the root of the $\operatorname{right-subtree}$
 - The value was deleted from the left sub-tree (since r is ackslash)
- What can be the **balance factor** of x?
 - $\$ and $\$ are not possible since the child x is **already restored**
- Case 1: x is \setminus
 - A **left-rotation** on r restores the property!
 - Both r and x become (easily seen in a drawing)

Delete: single left-rotation at r

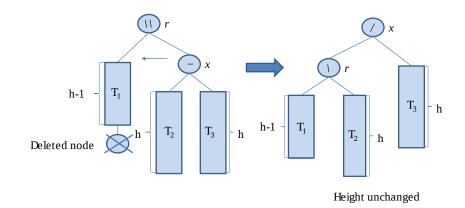


Height reduced

AVL restore after delete

- Case 2: x is -
 - After a **delete** this is possible!
 - A **left-rotation** on r again restores the property
 - r becomes \setminus , x becomes /

Delete: single left-rotation at r

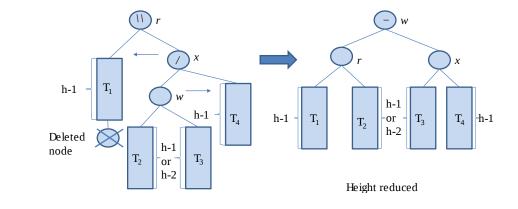


AVL restore after delete

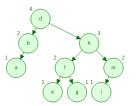
- Case 3: x is /
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become //
- We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r
- ullet The left-child w of x becomes the new root
 - w becomes -
 - r becomes or /
 - x becomes or \

Delete: double right-left rotation at r

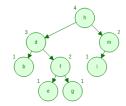
35



Delete example

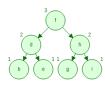


Delete example



Deleting a, causes single left-rotate at d

Delete example



Deleting m, causes double left-right rotation at d and h

Complexity of operations on AVL trees

- Search on BST is O(h)
 - So $O(\log n)$ for AVL, since $h \leq 2\log n$
- Insert/delete on BST is O(h)
 - We add at most on rotation at each step, each rotation is O(1)
 - So also $O(\log n)$
- Interesting fact
 - During insert **at most one rotation** will be performed!
 - Because both rotations we saw **decrease** the height of the sub-tree

Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store **only** the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.* Chapter 9. Section 9.8.
- R. Kruse, C.L. Tondo and B.Leung. *Data Structures and Program Design in C.* Chapter 9. Section 9.4.
- M.T. Goodrich, R. Tamassia and D. Mount. *Data Structures and Algorithms in C++*. 2nd edition. Section 10.2