Binary Trees, Heaps

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού

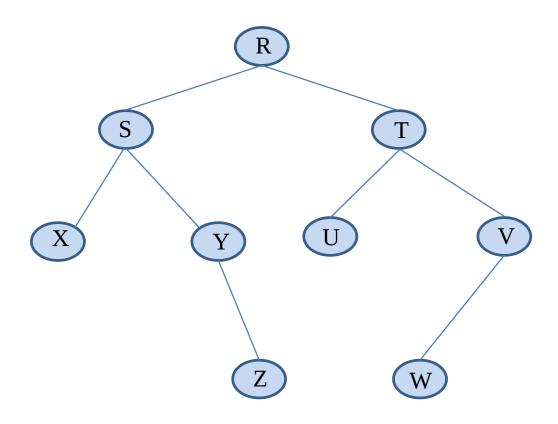
Κώστας Χατζηκοκολάκης

Binary trees

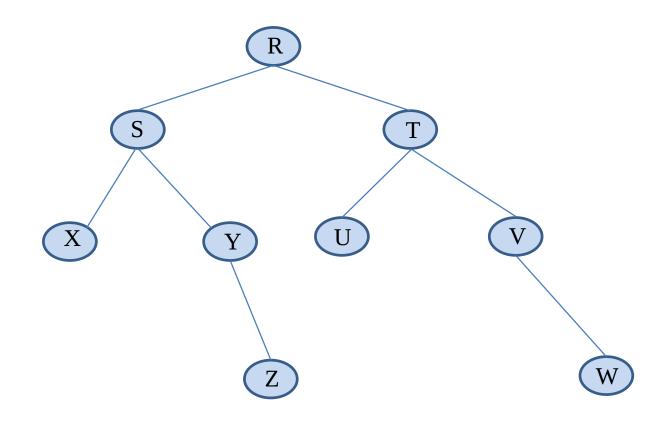
A binary tree (δυαδικό δέντρο) is a set of nodes such that:

- Exactly one node is called the root
- All nodes except the root have exactly one parent
- Each node has at most two children
 - and the are **ordered**: called **left** and **right**

Example: a binary tree



Example: a different binary tree



Whether a child is left or right matters.

Terminology

- path: sequence of nodes traversing from parent to child (or vice-versa)
- **length** of a path: number of nodes -1 (= number of "moves" it contains)
- **siblings**: children of the same parent
- descendants: nodes reached by travelling downwards along any path
- ancestors: nodes reached by travelling upwards towards the root
- leaf / external node: a node without children
- internal node: a node with children

Terminology

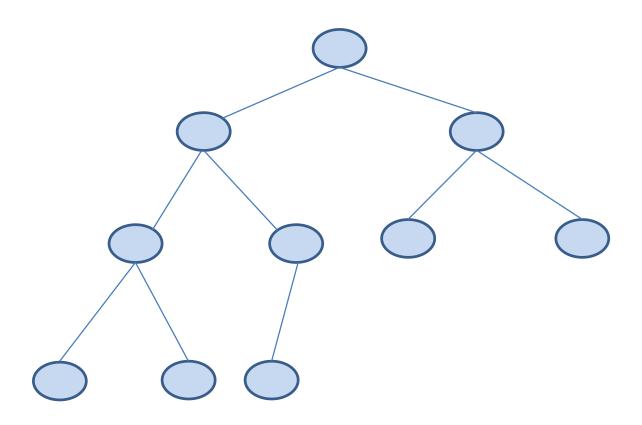
- Nodes tree can be arranged in **levels / depths**:
 - The root is at **level 0**
 - Its children are at **level 1**, their children are at **level 2**, etc.
- Note: node level = length of the (unique) path from the root to that node
- height of the tree: the largest depth of any node
- **subtree** rooted at a node: the tree consisting of that node and its descendants

Complete binary trees

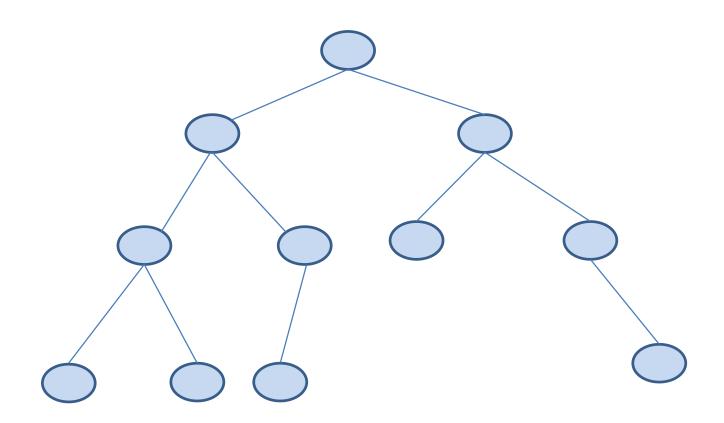
A binary tree is called **complete** (πλήρες) if

- All levels except the last are "full" (have the maximum number of nodes)
- The nodes at the last level fill the level "from left to right"

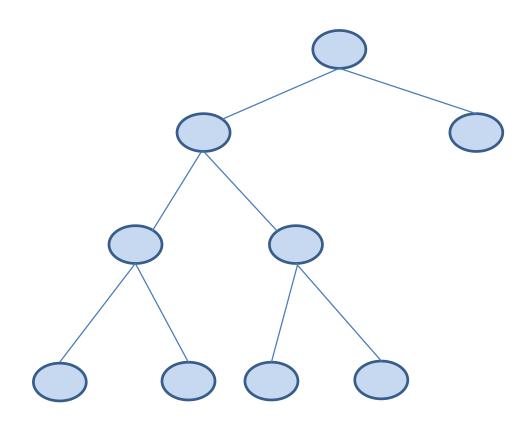
Example: complete binary tree



Example: not complete binary tree

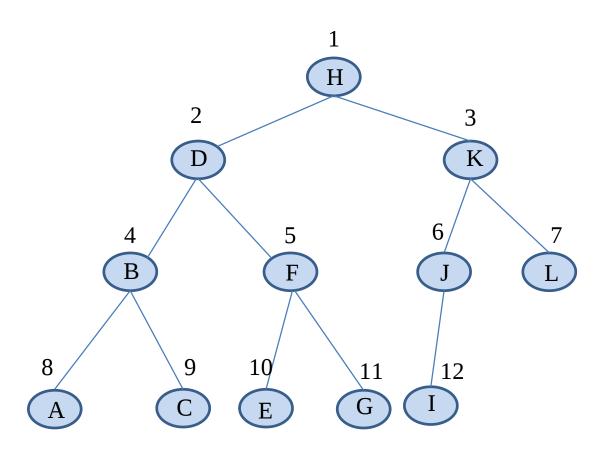


Example: not complete binary tree



Level order

Ordering the nodes of a tree level-by-level (and left-to-right in each level).



Nodes of a complete binary tree

- How many nodes does a complete binary tree have at each level?
- At most
 - 1 at level 0.
 - 2 at level 1.
 - 4 at level 2.
 - -
 - 2^k at level k .

Properties of binary trees

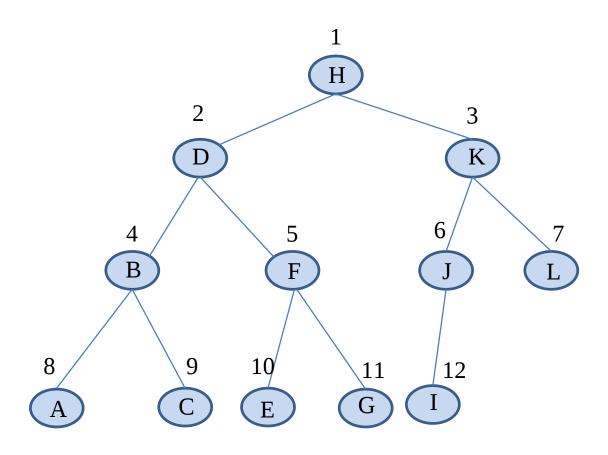
- The following hold:
 - $-h+1 \le n \le 2^{h+1}-1$
 - $1 \leq n_E \leq 2^h$
 - $h \le n_I \le 2^h 1$
 - $\log(n+1) 1 \le h \le n-1$
- Where
 - n: number of all nodes
 - n_I : number of internal nodes
 - n_E : number of external nodes (leaves)
 - h: height

Properties of complete binary trees

$h \le \log n$

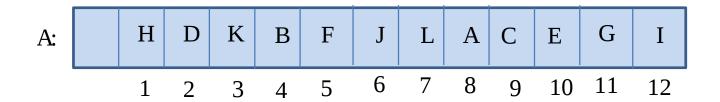
- Very important property, the tree cannot be too "tall"!
- Why?
 - Any level l < h contains exactly 2^l nodes
 - Level h contains at least one node
 - So $1+2+\ldots+2^{h-1}+1=2^h \le n$
 - And take logarithms on both sides

How do we represent a binary tree?



Sequential representation

Store the entries in an **array** at **level order**.



- Common for complete trees
- A lot of **space** is wasted for non-complete trees
 - missing nodes will have empty slots in the array

How to find nodes

To Find:	Use	Provided
The left child of $A[i]$	A[2i]	$2i \leq n$
The right child of $A[i]$	A[2i+1]	$2i+1 \leq n$
The parent of $A[i]$	A[i/2]	i > 1
The root	A[1]	A is nonempty
Whether $A[i]$ is a leaf		2i>n

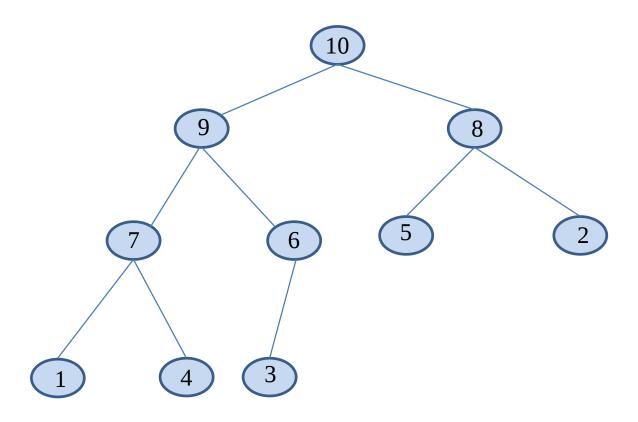
Heaps

A binary tree is called a **heap** ($\sigma\omega\rho\delta\varsigma$) if

- It is complete, and
- each node is greater or equal than its children

(Sometimes this is called a **max-heap**, we can similarly define a min-heap)

Example



Heaps and priority queues

- Heaps are a common data structure for implementing Priority Queues
- The following operations are needed
 - find max
 - insert
 - remove max
 - create with data
- We need to preserve the heap property in each operation!

Find max

- Trivial, the max is always at the root
 - remember: we always preserve the heap property
- Complexity?

Inserting a new element

- The new element can only be inserted at the **end**
 - because a heap must be a **complete** tree
- Now all nodes except the last satisfy the heap property
 - to restore it: apply the **bubble_up** algorithm on the last node

Inserting a new element

bubble_up(node)

Before

- node might be larger than its parent
- all other nodes satisfy the heap property

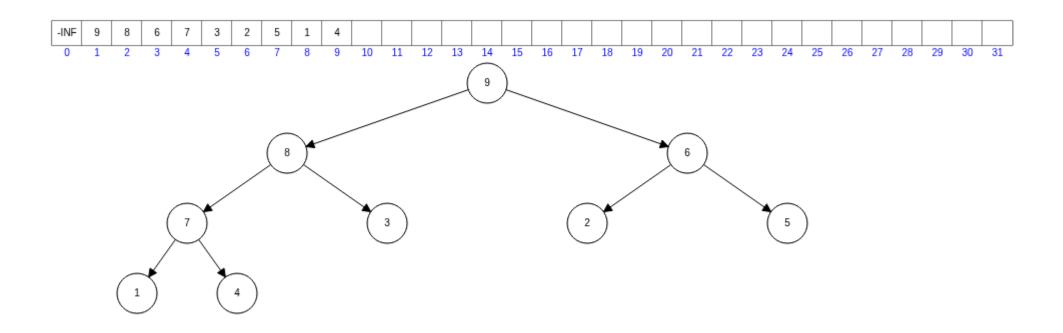
After

- all nodes satisfy the heap property

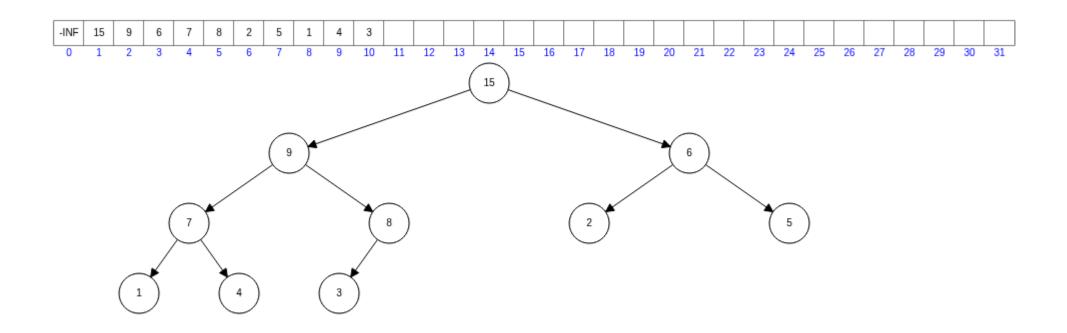
Algorithm

- if node > parent
 - swap them and call bubble_up(parent)

Example insertion

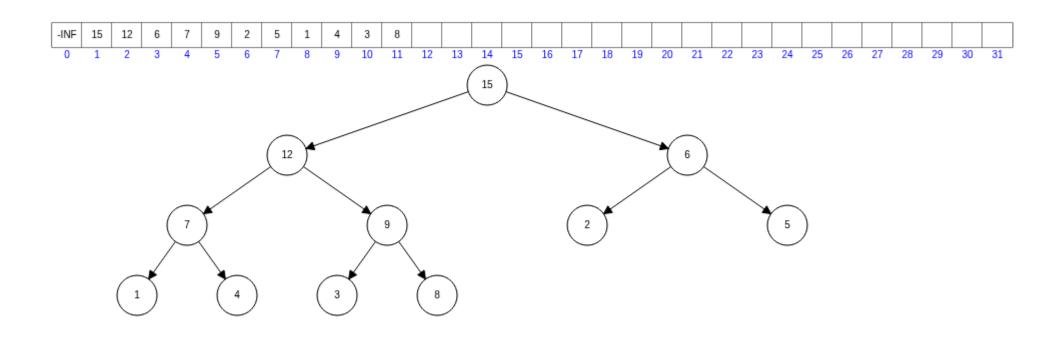


Example insertion



Inserting 15 and running bubble_up

Example insertion



Inserting 12 and running bubble_up

Complexity of insertion

- We travel the tree from the last node to the root
 - on each node: 1 step (constant time)
- So we need at most O(h) steps
 - *h* is the height of the tree
 - but $h \leq \log n$ on a **complete tree**
- So $O(\log n)$
 - the "complete" property is crucial!

Removing the max element

- We want to remove the root
 - but the heap must be a **complete** tree
- So **swap** the root with the **last** element
 - then remove the last element
- Now all nodes except the root satisfy the heap property
 - to restore it: apply the **bubble_down** algorithm on the root

Removing the max element

bubble_down(node)

Before

- node might be **smaller** than any of its children
- all other nodes satisfy the heap property

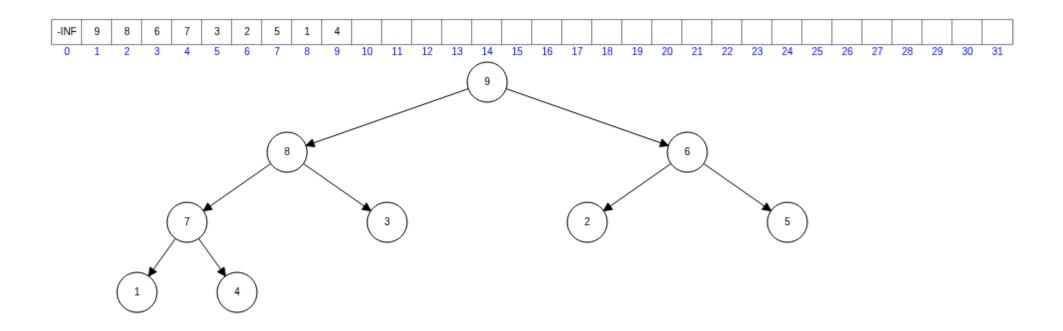
After

- all nodes satisfy the heap property

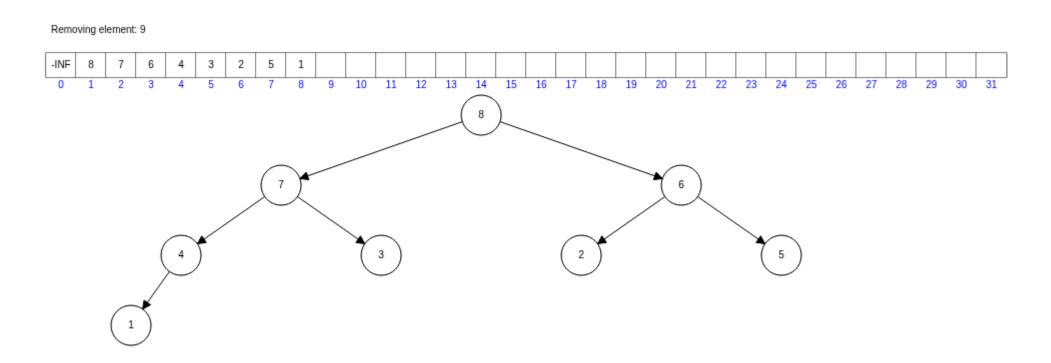
Algorithm

- max_child = the largest child of node
- If node < max_child</pre>
 - swap them and call bubble_down(max_child)

Example removal



Example removal



Removing 9 and restoring the heap property

Complexity of removal

- We travel a single path from the root to a leaf
- So we need at most O(h) steps
 - *h* is the height of the tree
- Again $O(\log n)$
 - again, having a complete tree is crucial

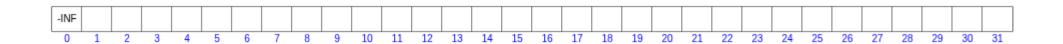
Building a heap from initial data

- What if we want to create a heap that contains some initial values?
 - we call this operation **heapify**
- "Naive" implementation:
 - Create an empty heap and insert elements one by one
- What is the complexity of this implementation?
 - We do n inserts
 - Each insert is $O(\log n)$ (because of bubble_up)
 - So $O(n \log n)$ total
- Worst-case example?
 - sorted elements: each value with have to fully **bubble_up** to the root

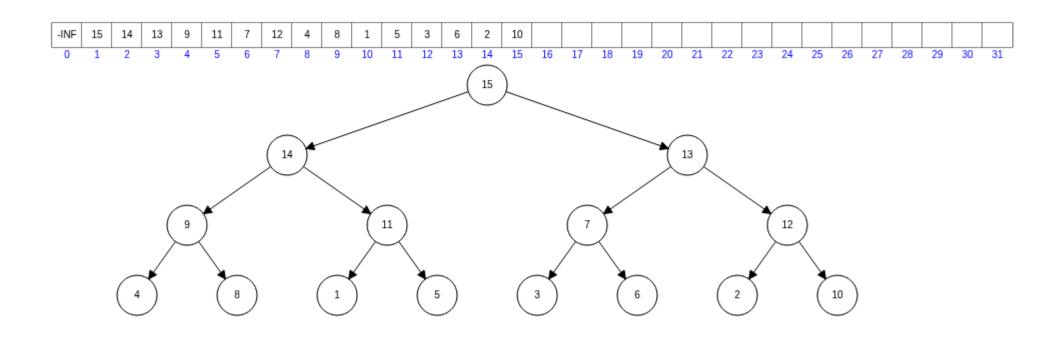
Efficient heapify

- Better algorithm:
 - Visit all internal nodes in reverse level order
 - \circ last internal node: $rac{n}{2}$ (parent of the last leaf n)
 - first internal node: 1 (root)
 - Call bubble_down on each visited node
- Why does this work?
 - when we visit node, its **subtree** is already a heap
 - except from node itself (the precondition of bubble_down)
 - So bubble_down restores the heap property in the subtree
 - After processing the root, the whole tree is a heap

Heapify example



Heapify example



Visit internal nodes in inverse level order, call bubble_down.

Complexity of heapify

- We call **bubble_down** $\frac{n}{2}$ times
 - So $O(n \log n)$?
- But this is only an upper-bound
 - bubble_down is faster closer to the leaves
 - and **most nodes** live there!
 - we might be over-approximating the number of steps

Complexity of heapify

- More careful calculation of the number of steps:
 - If ${\sf node}$ is at level l, ${\sf bubble_down}$ takes at most h-l steps
 - At most 2^l nodes at this level, so $(h-l)2^l$ steps for level l
 - For the whole tree: $\sum_{l=0}^{h-1} (h-l) 2^l$
 - This can be shown to be less than 2n (exercise if you're curious)
- So we get worst-case O(n) complexity

Efficient vs naive heapify

- For naive_heapify we found $O(n \log n)$
 - maybe we are also over-approximating?
- No: in the worst-case (sorted elements) we really need $n \log n$ steps
 - try to compute the exact number of steps
- The difference:
 - bubble_up is faster closer to the **root**, but **few** nodes live there
 - bubble_down is faster closer to the leaves, and most nodes live there
- Note: in the **average-case**, the naive version is also O(n)

Implementing ADTPriorityQueue

Types

Types.

Finding the max is trivial.

```
Pointer pqueue_max(PriorityQueue pqueue) {
   return node_value(pqueue, 1);  // root
}
```

For pqueue_insert, the non-trivial part is bubble_up.

```
// Αποκαθιστά την ιδιότητα του σωρού.
// Πριν: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού, εκτός από
         τον node που μπορεί να είναι _μεγαλύτερος_ από τον πατέρα το
// Μετά: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού.
static void bubble_up(PriorityQueue pqueue, int node) {
    // Αν φτάσαμε στη ρίζα, σταματάμε
    if (node == 1)
         return;
    int parent = node / 2; // 0 \pi \alpha \tau \epsilon \rho \alpha \varsigma \tau \sigma \sigma \kappa \delta \mu \beta \sigma \sigma. Ta node ids
    // Αν ο πατέρας έχει μικρότερη τιμή από τον κόμβο, swap και συνεχ
    if (pqueue->compare(node_value(pqueue, parent), node_value(pqueue)
         node_swap(pqueue, parent, node);
         bubble_up(pqueue, parent);
```

```
// Πριν: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού, εκτός από
        node που μπορεί να είναι _μικρότερος_ από κάποιο από τα παιδ
// Μετά: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού.
static void bubble_down(PriorityQueue pqueue, int node) {
    // βρίσκουμε τα παιδιά του κόμβου (αν δεν υπάρχουν σταματάμε)
    int left_child = 2 * node;
    int right_child = left_child + 1;
    int size = pqueue size(pqueue);
    if (left child > size)
        return;
    // βρίσκουμε το μέγιστο από τα 2 παιδιά
    int max_child = left_child;
    if (right_child <= size && pqueue->compare(node_value(pqueue, lef
            max_child = right_child;
    // Αν ο κόμβος είναι μικρότερος από το μέγιστο παιδί, swap και συ
    if (pqueue->compare(node_value(pqueue, node), node_value(pqueue,
        node_swap(pqueue, node, max_child);
        bubble_down(pqueue, max_child);
```

Other possible representations

Operation	Heap	Sorted List	Unsorted Vector
<pre>pqueue_create (with data)</pre>	O(n)	$O(n \log n)$	O(1)
pqueue_remove	$O(\log n)$	O(1)	O(n)
pqueue_insert	$O(\log n)$	O(n)	O(1)

All of them have **some** advantage

• Heaps provide a great compromise between insertions and removals

Using ADTPriorityQueue for sorting

- We can easily sort data using ADTPriorityQueue
 - create a priority queue with the data
 - remove elements in sorted order
- When ADTPriorityQueue is implemented by a heap
 - this algorithm is called **heapsort**
 - and runs in time $O(n \log n)$

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.* Chapter 9. Sections 9.1 to 9.6.
- R. Sedgewick. Αλγόριθμοι σε C. Κεφ. 5 και 9.

Proofs of given statements can be found in the following book:

• M. T. Goodrich, R. Tamassia and D. Mount. *Data Structures and Algorithms in C++.* 2nd edition. John Wiley and Sons, 2011.