Dynamic Arrays

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Κώστας Χατζηκοκολάκης

How can we implement ADTVector?

- A Vector can be seen as an abstract resizable "array"
- So it makes sense to **implement** it using a **real array**
 - store Vector's elements in the array
 - vector_get_at, vector_set_at are trivial
- But what about vector_insert_last?
 - Arrays in C have fixed size

Dynamic arrays

- Main idea: **resize** the array
 - such arrays are called "dynamic" or "growable"
- **Problem**: we need to **copy** the previous values
- A possible algorithm for vector_insert_last
 - Allocate memory for size+1 elements
 - Copy the size previous elements
 - Set the new element as last
 - Increase size
- What is the complexity of this?

Dynamic arrays

1

3

- Main idea: resize the array
 - such arrays are called "dynamic" or "growable"
- **Problem**: we need to **copy** the previous values
- A possible algorithm for vector_insert_last
 - Allocate memory for size+1 elements
 - Copy the size previous elements
 - Set the new element as last
 - Increase size
- What is the complexity of this?
 - O(n), because of the copy!
 - Can we do better?

Improving the complexity of insert

- Idea: allocate more memory than we need!
 - eg. allocate memory for 100 "empty" elements
 - **capacity**: total allocated memory
 - **size**: number of inserted elements
 - Insert is O(1) if we have free space (just copy the new value)
- Does this change the complexity?
 - in the **worst-case**?
 - in the average-case?

Amortized-time complexity

- We see here the value of **amortized-time** complexity
 - A single execution **can** be slow
 - But "most" are fast
 - In many application we only care about the ${\bf average}$ wrt all ${\bf executions}$
- Assume we reserve 100 more elements each time
 - How many steps each insert takes on average?

Improving the complexity of insert

- Idea: allocate more memory than we need!
 - eg. allocate memory for 100 "empty" elements
 - capacity: total allocated memory
 - size: number of inserted elements
 - Insert is O(1) if we have free space (just copy the new value)
- Does this change the complexity?
 - in the **worst-case**?

4

- in the average-case?
- **No**, for some values of n the operation is still slow!
 - For **any values**, "average-case" makes no differece

Amortized-time complexity

- We see here the value of **amortized-time** complexity
 - A single execution **can** be slow
 - But "most" are fast
 - In many application we only care about the average wrt all executions
- Assume we reserve 100 more elements each time
 - How many steps each insert takes on average?
- Intuitively: $\frac{n}{100}$. So **still** O(n), same complexity!
 - Same for any **constant** number of empty elements k
 - Remember, complexity cares about large n! Think $n\gg k$
 - Can we do better?

How to improve the complexity

- Idea: the number of empty elements must depend on n
 - Use more empty elements as the Vector grows!
- Standard approach: reserve $a \cdot n$ extra elements
 - for some constant a>1 , called the **growth factor**
- Common values
 - -a = 2
 - -a = 1.5
- In this class we will use a=2
 - we always **double** the capacity

A property to remember

• Consider the **geometric progression** with ratio 2

$$1, 2^1, 2^2, \dots, 2^n$$

• Summing n terms, we get the **next one minus 1**

6

$$1 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$$

- So each term is **larger** than **all the previous** together!
 - This is important since sereral quantities **double** in data structures

From linear to constant time

- We always **double** the capacity
 - What is the amortized-time complexity of insert?
- ullet We do n insertions starting from an empty Vector
 - Assume the last one was "slow" (the most "unlucky" case)
- How many **steps** did we peform **in total**?
 - n steps just for placing each element
 - n steps for the **last resize**
 - How many for all the prevous resizes together?

$$\frac{n}{2} + \frac{n}{4} + \ldots + 1 = n-1$$

- So less than 3n in total!
 - On average: $\frac{3n}{n} = O(1)$

- Key point: previous inserts are insignificant compared to the last one

Removing elements

- What about vector_remove_last?
- Simplest strategy: just consider the removed space as "empty"
 - vector_remove_last is clearly worst-case O(1)
 - Insert is not affected (we never reduce the amount of free space)
- Commonly used in practice
 - eg. std::vector in C++
- Problem: wasted space

Recovering wasted space

- **Idea**: if **half** of the array becomes empty, resize
 - the opposite of the doubling growing strategy
 - Is this ok?
- Careful
 - this is ok if we only remove
 - but a combination of remove+insert might become slow!
- Think of the following scenario
 - Insert n elements with $n=2^k$
 - The vector is now full
 - Perform a series of: insert, remove, insert, remove, ...

Recovering wasted space

- **Idea**: if **half** of the array becomes empty, resize
 - the opposite of the doubling growing strategy
 - Is this ok?

Recovering wasted space

Better strategy

9

- when only $\frac{1}{4}$ of the array is full
- resize to $\frac{1}{2}$ of the capacity!
- So we still have "room" to both insert and remove
- We can show that even a combination of insert+remove is O(1) amortized-time

Implementation

Types

Implementation

```
Vector vector_create(int size, DestroyFunc destroy_value) {
    // Αρχικά το vector περιέχει size μη-αρχικοποιημένα στοιχεία, αλλ
    // δεσμεύουμε χώρο για τουλάχιστον VECTOR_MIN_CAPACITY για να απο
    // πολλαπλά resizes
    int capacity = size < VECTOR_MIN_CAPACITY ? VECTOR_MIN_CAPACITY :

    // Δέσμευση μνήμης, για το struct και το array.
    Vector vec = malloc(sizeof(*vec));
    VectorNode array = calloc(capacity, sizeof(*array)); // αρχικοπο
    vec->size = size;
    vec->capacity = capacity;
    vec->array = array;
    vec->destroy_value = destroy_value;
    return vec;
}
```

Implementation

Random access is simple, since we have a real array.

```
Pointer vector_get_at(Vector vec, int pos) {
    return vec->array[pos].value;
}

void vector_set_at(Vector vec, int pos, Pointer value) {
    // Αν υπάρχει συνάρτηση destroy_value, την καλούμε για
    // το στοιχείο που αντικαθίσταται
    if (value != vec->array[pos].value && vec->destroy_value != NULL)
        vec->destroy_value(vec->array[pos].value);

vec->array[pos].value = value;
}
```

Implementation

Insert, we just need to deal with resizes.

```
void vector_insert_last(Vector vec, Pointer value) {
    // Μεγαλώνουμε τον πίνακα (αν χρειαστεί), ώστε να χωράει τουλάχιο
    // στοιχεία. Διπλασιάζουμε κάθε φορά το capacity (σημαντικό για τ
    // πολυπλοκότητα!)
    if (vec->capacity == vec->size) {
        vec->capacity *= 2;
        vec->array = realloc(vec->array, vec->capacity * sizeof(*new_)
    }

    // Μεγαλώνουμε τον πίνακα και προσθέτουμε το στοιχείο
    vec->array[vec->size].value = value;
    vec->size++;
}
```

Takeaways

- **Dynamic arrays** are the standard way to implement ADTVector
- Insert is O(1)
 - but amortized-time!
 - would you use a dynamic array in the software controlling an Airbus?
- Remove is also O(1)
 - also amortized, if we care about recovering wasted space
- Random access (get/set) is always worst-case O(1)

