Multi-Way Search Trees

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Κώστας Χατζηκοκολάκης

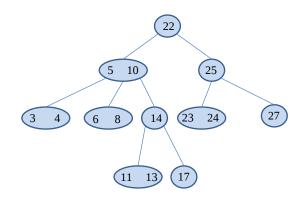
Motivation

- We keep the **ordering** idea of BSTs
 - **Fast search**, by excluding whole subtrees
- And add more than two children for each node
 - Gives more flexibility in restructuring the tree
 - And news ways to **keep it balanced**

Multi-way search trees

- d-node: a node with d children
- Each **internal** d-node stores d-1 **ordered** values $k_1 < \ldots < k_{d-1}$
 - **No duplicate** values in the whole tree
- All values in a **subtree** lie **in-between** the corresponding node values
 - For all values l in the i-th subtree: $k_{i-1} < l < k_i$
 - Convention: $k_0=-\infty, k_d=+\infty$
- ullet m-way search tree: all nodes have **at most** m children
 - A BST is a 2-way search tree

Example multi-way search tree

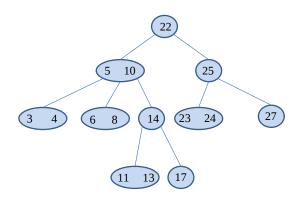


$$m = 3$$

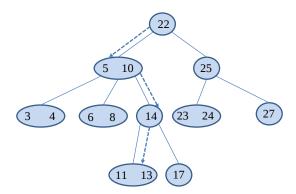
Searching in a multi-way search tree

- Simple adaptation of the algorithm for BSTs
- Start from the root, traverse towards the leaves
- ullet In each node, there is **a single subtree** that can possibly contain a value l
 - The subtree i such that $k_{i-1} < l < k_i$
 - Continue in that subtree

Example multi-way search tree

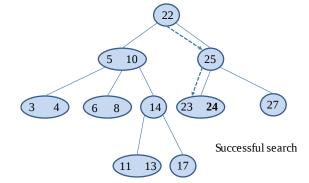


Search for value 12



Unsuccessful search

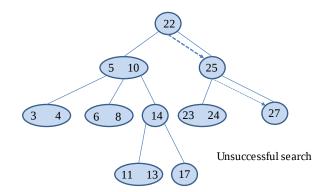
Search for value 24



Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
 - **But**: we don't always need to create a new node
 - We can insert in an existing one if there is space
- ullet Start with a search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the **leaf** we reached
 - If full, create an i-th child, such that $k_{i-1} < l < k_i$

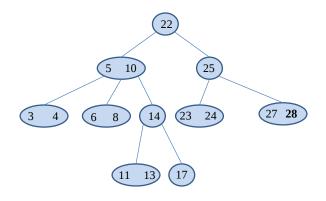
Insert value 28



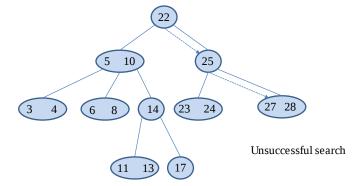
m = 3

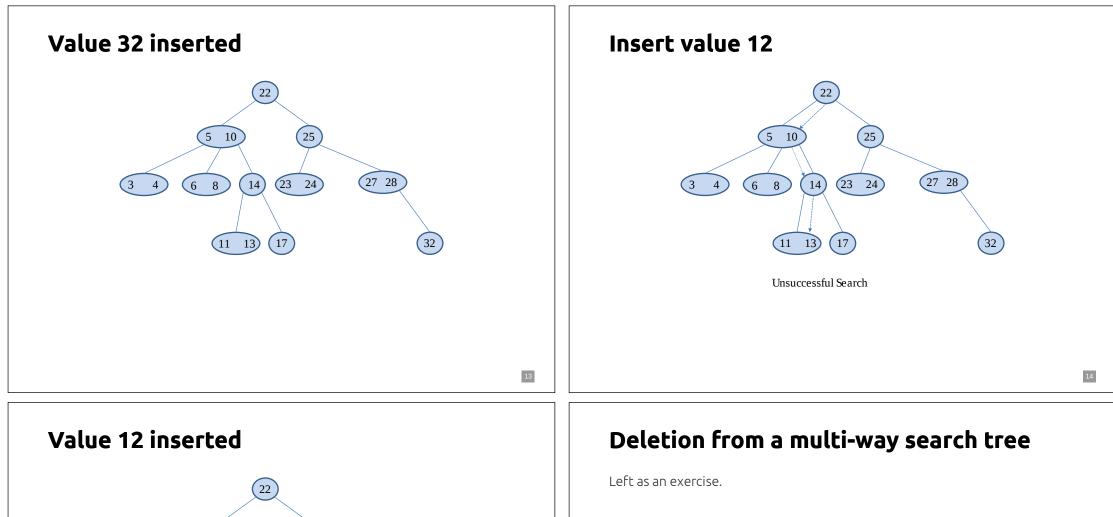
9

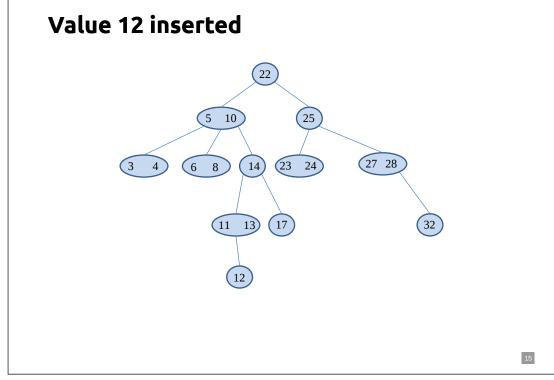
Value 28 inserted



Insert value 32







Complexity of operations

- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
 - Eg. find i such that $k_{i-1} < l < k_i$
 - Assuming m is **fixed**!
- So as usual all complexities are O(h)
 - $\mathit{O}(n)$ in the worst-case

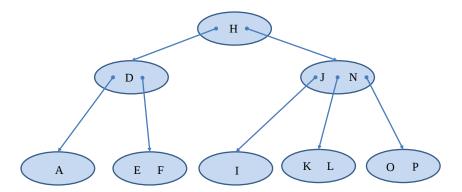
Balanced multi-way search trees

- Similarly to BSTs we need to keep the tree **balanced**
 - So that $h = O(\log n)$
- AVL where a kind of balanced BSTs
- We will study two kinds of **balanced multi-way** search trees:
 - 2-3 trees
 - **2-3-4 trees** (also known as 2-4 trees)

2-3 trees

- A **2-3 tree** is a 3-way search tree which has the following properties
- Size property
 - Each node contains 1 or 2 values
 - Internal nodes with n values have exactly n+1 children
- Depth property
 - All **leaves** have the **same depth** (lie on the same level)

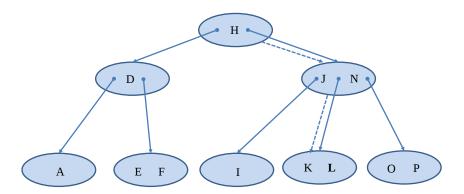
Example of 2-3 tree



Height of 2-3 trees

- All nodes at all levels except the last one are internal
 - And each internal node has at least 2 children
 - So at level i we have at least 2^i nodes
- Hence $n \geq 2^h$, in other words $h = O(\log n)$
- So we can search for an element in time $O(\log n)$
 - Using the standard algorithm for m-way trees

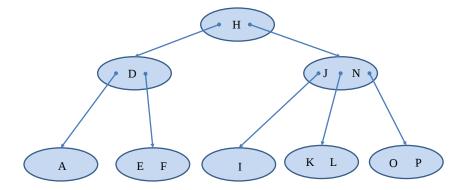
Search for L



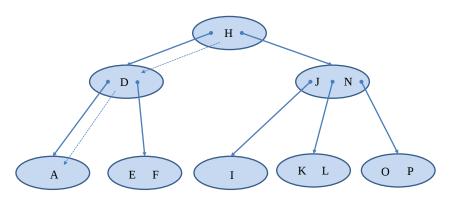
Insertion in 2-3-trees

- ullet We can start by following the generic algorithm for m-way trees
- ullet Search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the **leaf** we reached

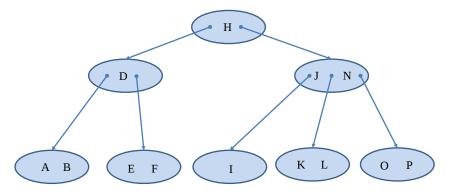
Example: insert B



Example: insert B



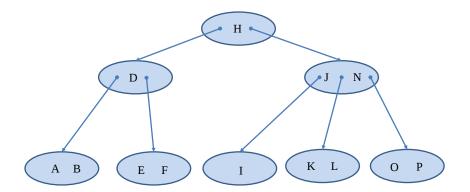
Example: result

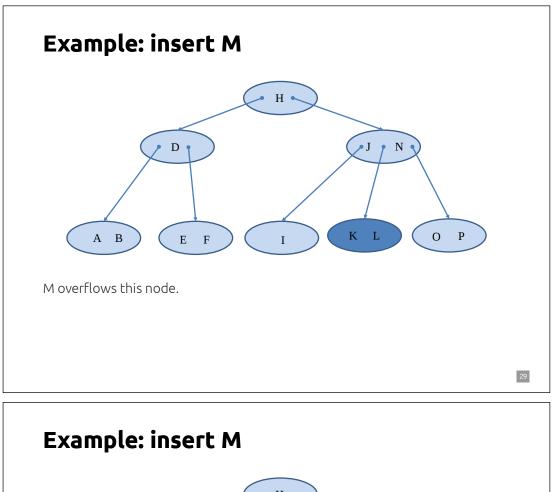


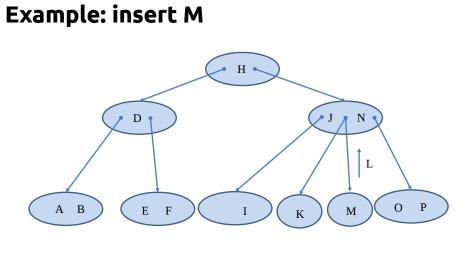
Insertion in 2-3-trees

- But what if there is **no space at the leaf** (overflow)?
- The standard algorithm will insert a child at the leaf
 - But this **violates the depth property**!
 - The new leaf is not at the same level
- Different strategy
 - **split** the overflowed node into two nodes
 - pass the **middle value** to the parent (**separator** of the two nodes)
- The middle value might **overflow the parent**
 - Same procedure: split and send the middle value up

Example: insert M



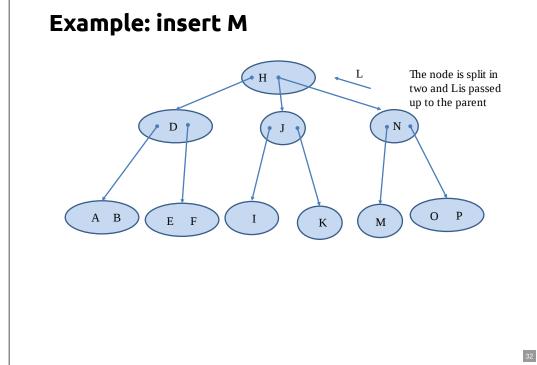


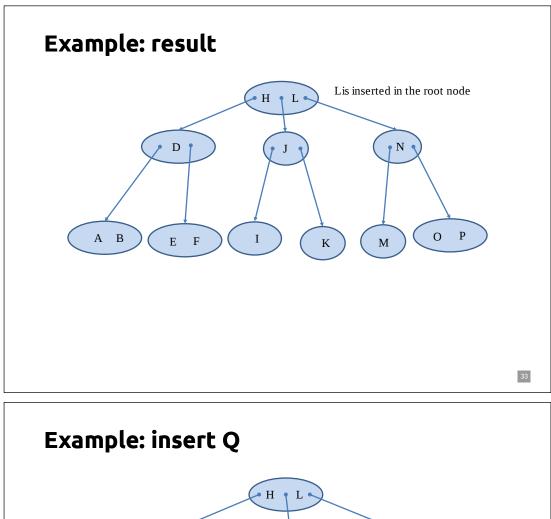


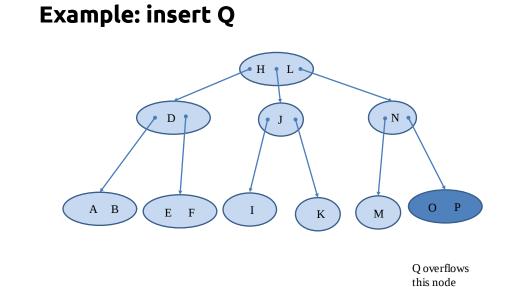
The node is split in two and Lis passed to the parent node

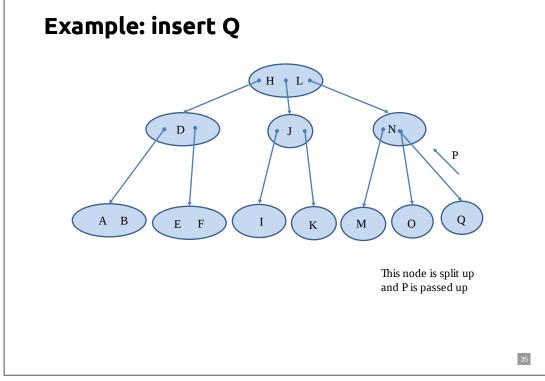
30

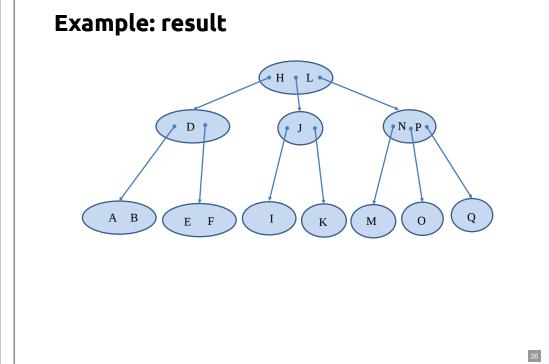
Example: insert M Loverflows this node A B E F I K M O P



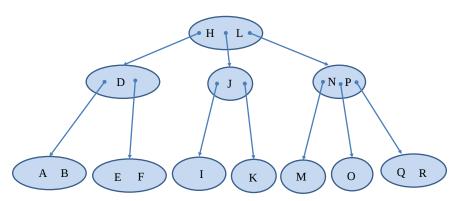








Example: insert R

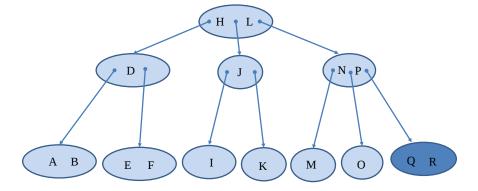


 $\ensuremath{\mathsf{R}}$ is inserted in the node with Q where there is space.

Insertion in 2-3-trees

- The **root** might also **overflow**
- Same procedure
 - Split it
 - The middle value moves up, creating a **new root**
- This is the **only** operation that **increases** the tree's **height**
 - It increases the depth of **all nodes** simultaneously
 - 2-3-trees grow at the root, not at the leaves!

Example: insert S

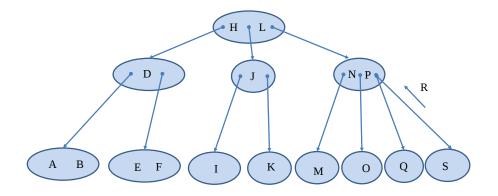


S overflows this node

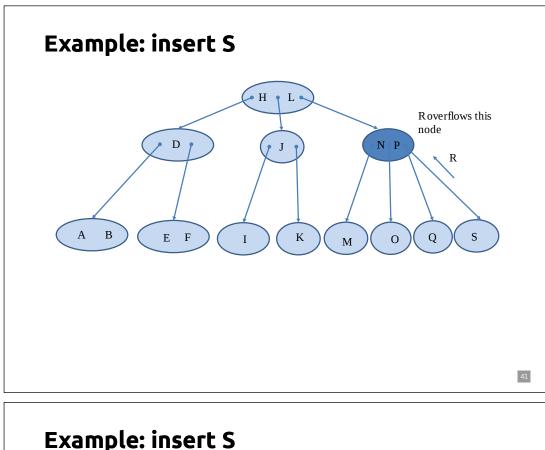
37

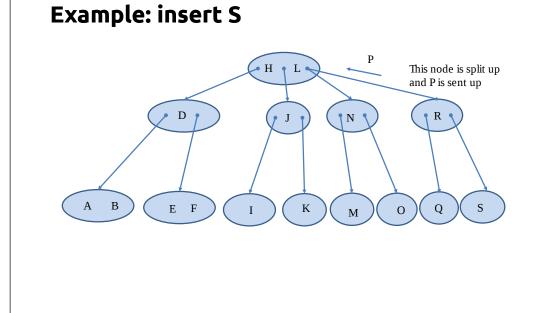
S overflows this node

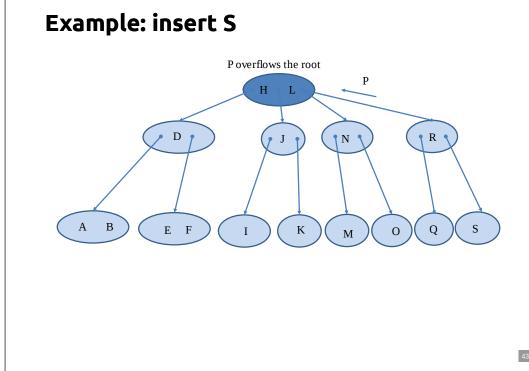
Example: insert S

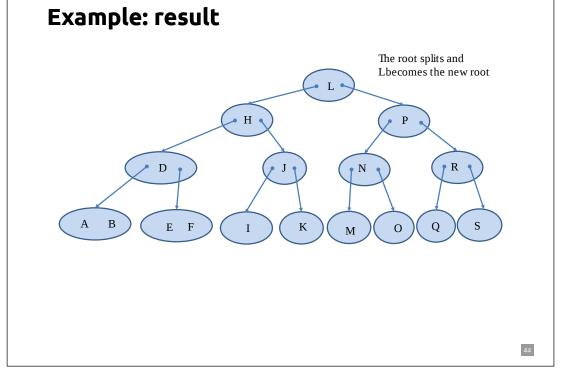


This node is split and R is sent up









Complexity of insertion

- We traverse the tree
 - From the root to a leaf when searching
 - From the leaf back to the root while splitting
- Each split takes constant time
 - We do at most h+1 of them
- So in total $O(h) = O(\log n)$ steps
 - Recall, the tree is balanced

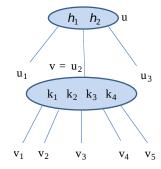
2-4 trees

- A **2-4 tree** (or 2-3-4 tree) is a 4-way search tree with 2 extra properties
- Size property
 - Each node contains between 1 and 3 values
 - **Internal** nodes with n values have exactly n+1 **children**
- Depth property
 - All **leaves** have the **same depth** (lie on the same level)
- Such trees are balanced
 - $h = O(\log n)$
 - Proof: exercise

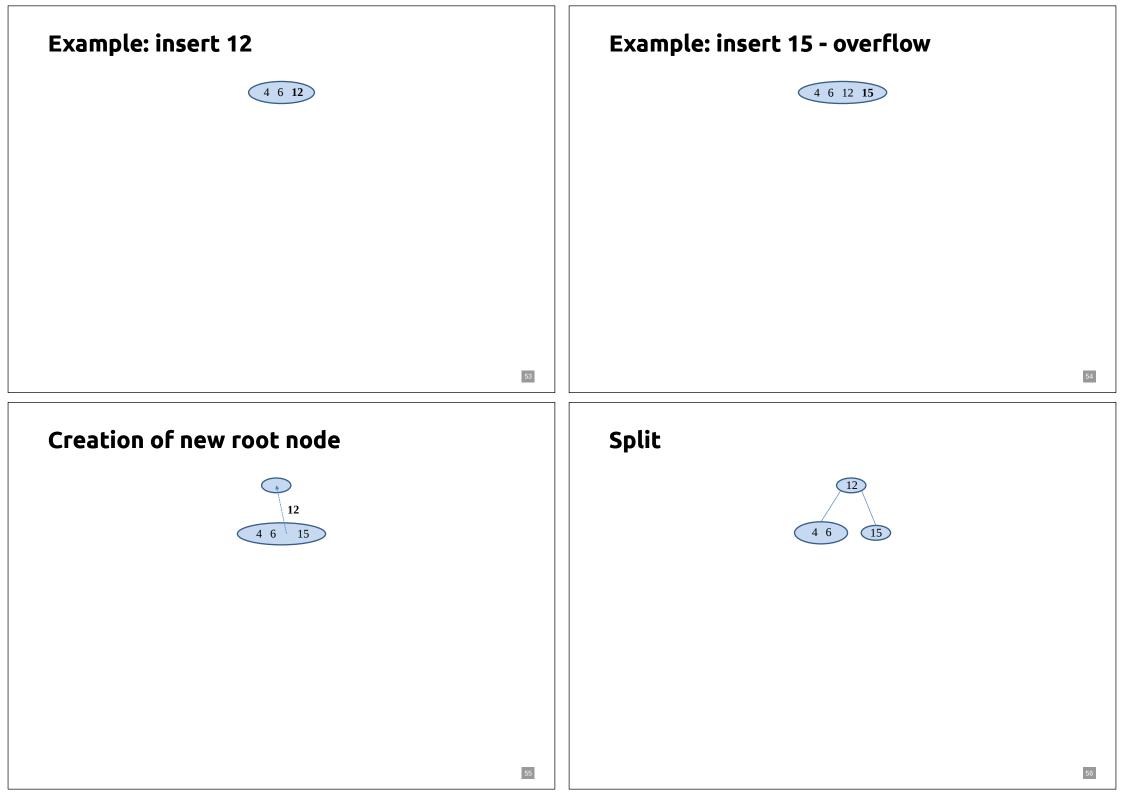
Insertion in 2-4 trees

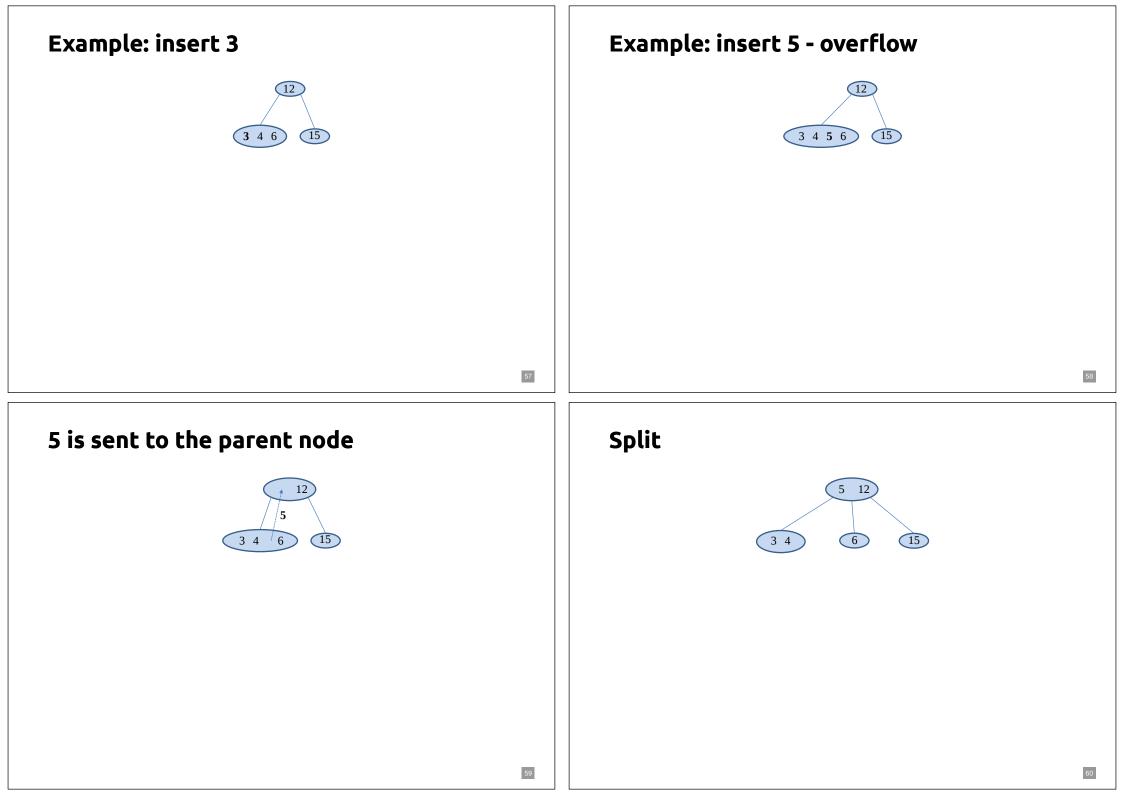
- Same as for 2-3-trees
 - Search for the value
 - Insert at a leaf
- In case of an overflow (5-node)
 - Split it into a 3-node and a 2-node
 - Move the separator value k_3 to the parent

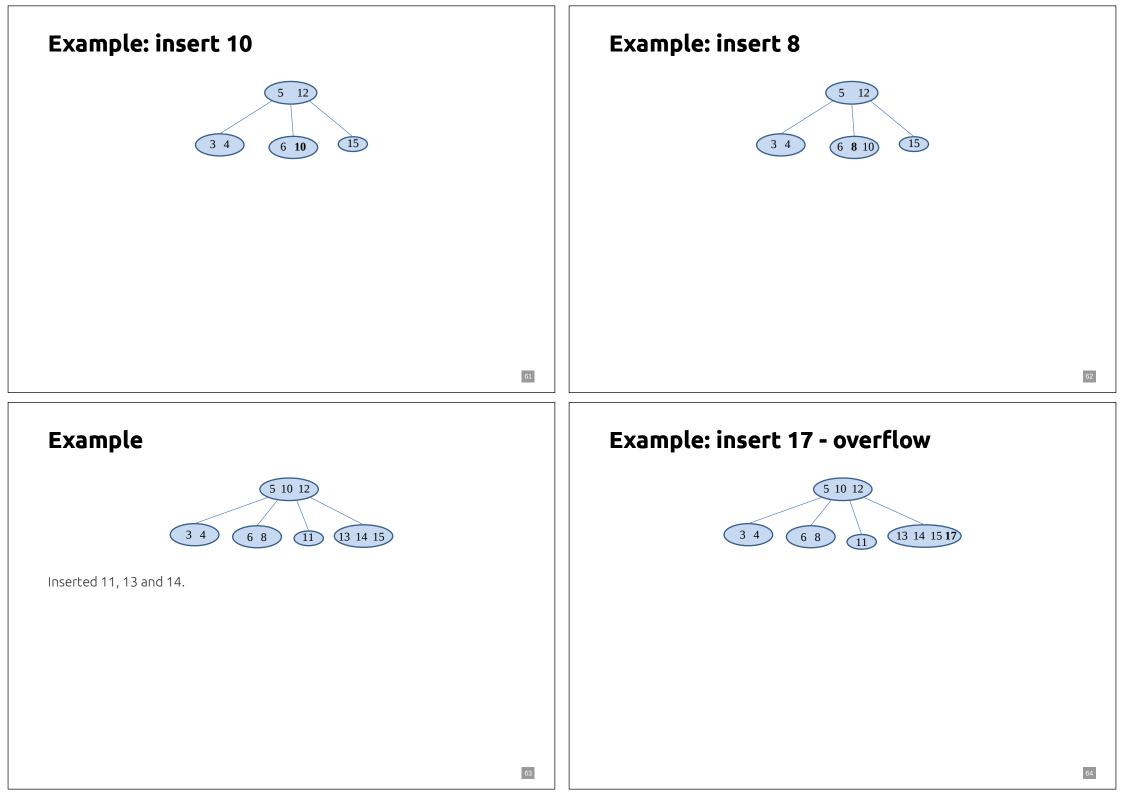
Overflow at a 5-node

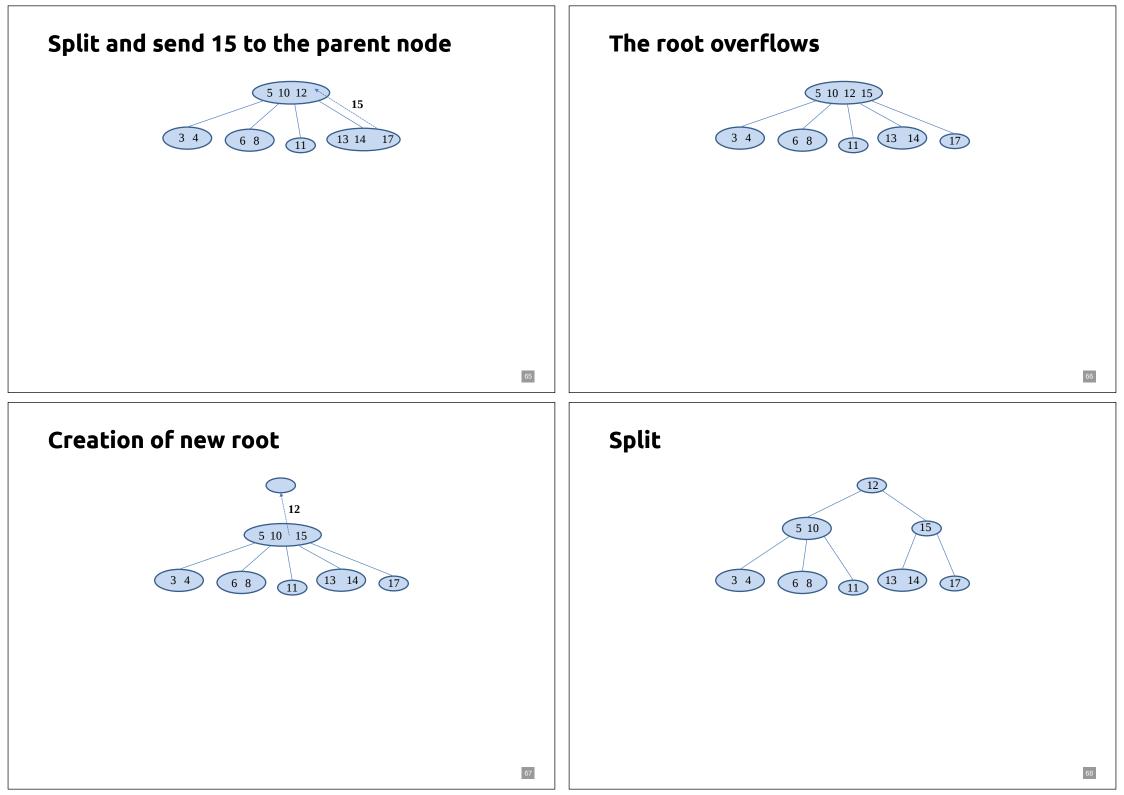


The separating value is sent to the parent node Node replaced with a 3-node and a 2-node h_1 k_3 h_2 u k_1 k_2 $v_3 v_4$ 50 Example: insert 6 Example: insert 4 4 6

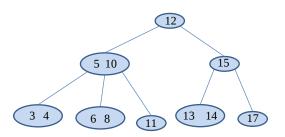








Final tree



Complexity

- Same as for 2-3-trees
 - At most h splits
 - Each split is constant time
- $O(\log n)$

69

- Because the tree is balanced

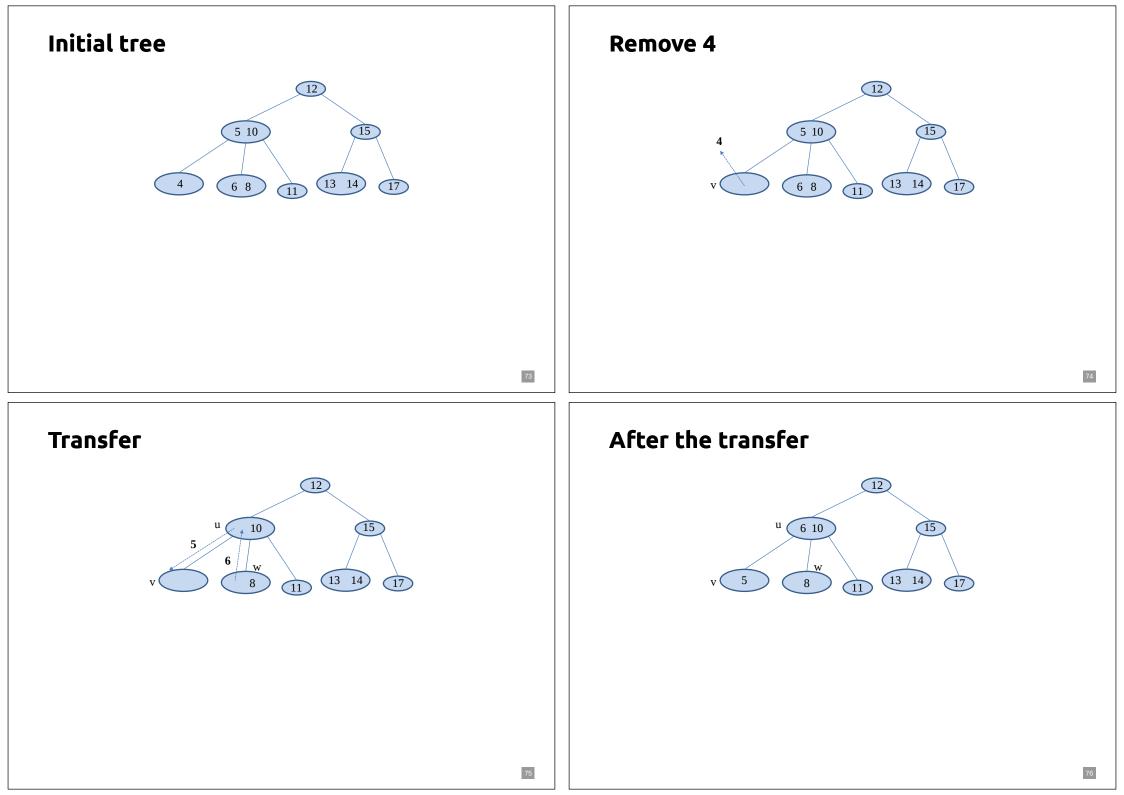
Removal in 2-4 trees

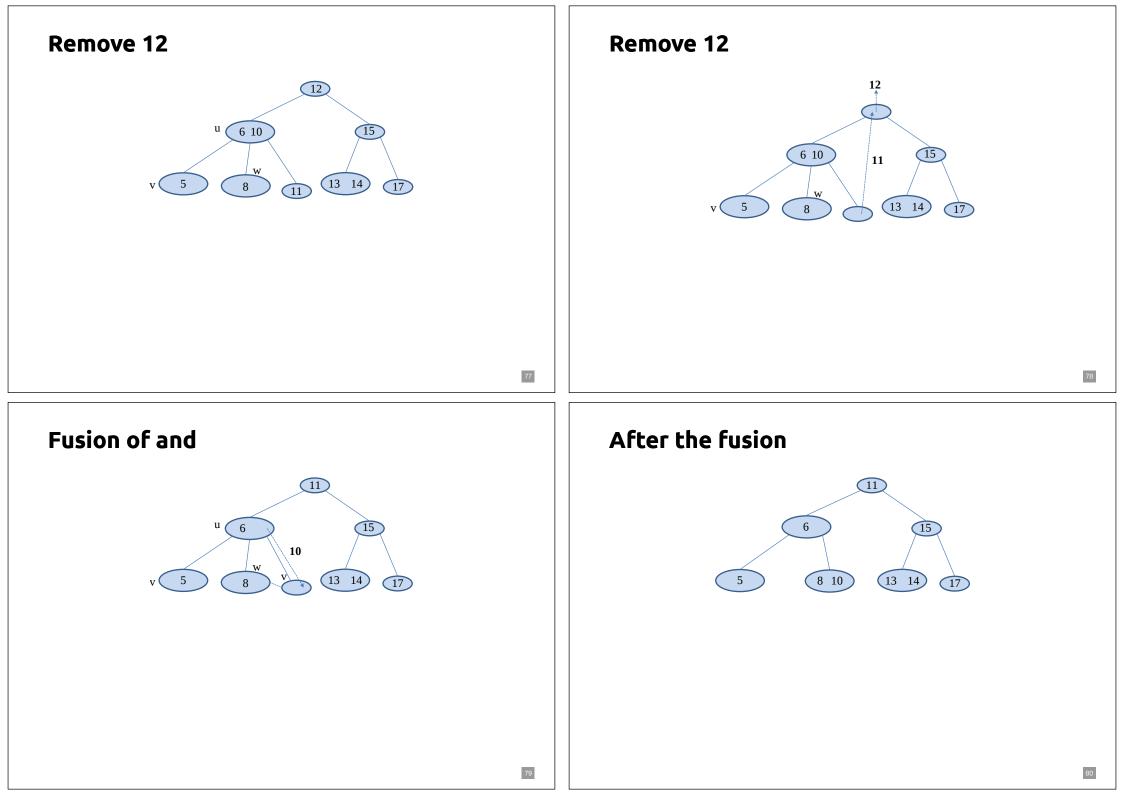
- To remove a value k_i from an **internal** node
 - Replace with its **predecessor** (or its **successor**)
 - Right-most value in the \emph{i} -th subtree
 - Similar to the BST case of nodes with two children
- To remove a value from a **leaf**
 - We simply remove it
 - But it might viotalate the **size** property (**underflow**)

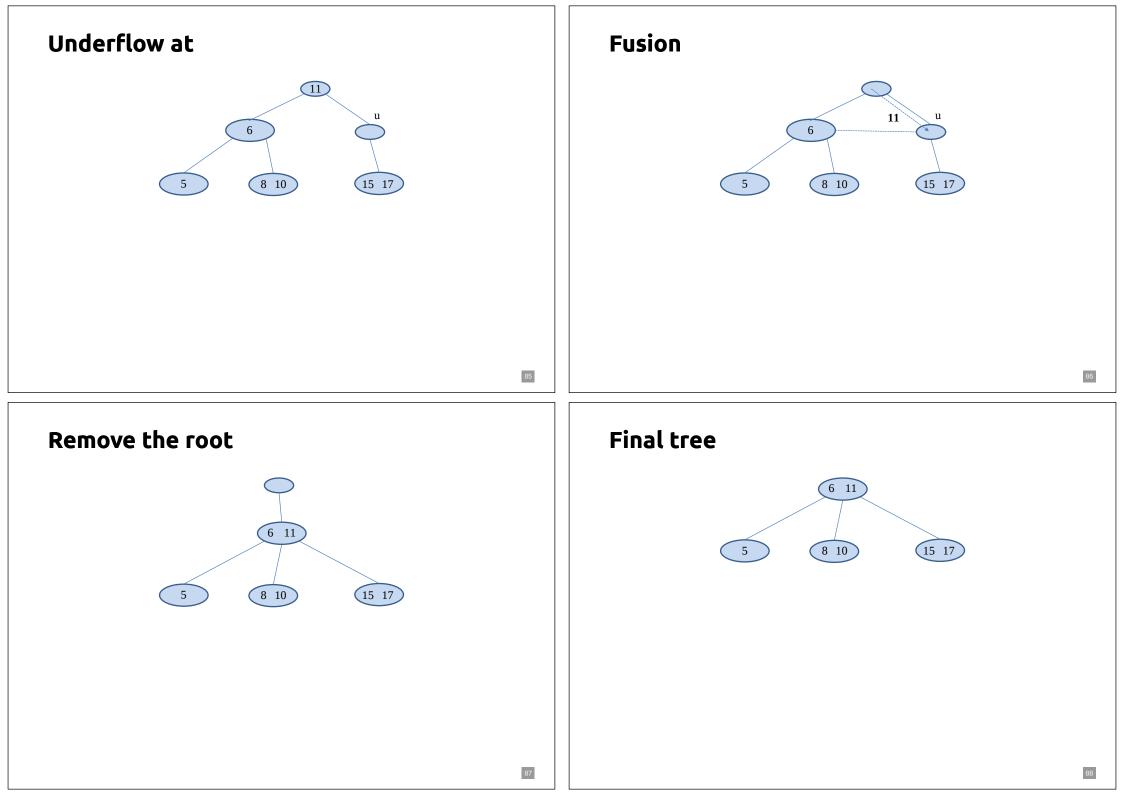
Fixing underflows

Two strategies for fixing an underlow at u

- Is there an **immediate sibling** w with a "spare" value? (2 or 3 values)
- If so, we do a **transfer** operation
 - Move a value of w to its parent u
 - Move a value of the parent u to u
- If not, we do a **fusion** operation
 - Merge u and w , creating a new node u'
 - Move a value from the parent u to u'
 - This might **underflow the parent**, continue the same procedure there







Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.* Section 9.9
- M. T. Goodrich, R. Tamassia and D. Mount. *Data Structures and Algorithms in C++*. Section 10.4
- R. Sedgewick. *Αλγόριθμοι σε C*. 3η Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος. Section 13.3

