Weighted graphs

Κ08 Δομές Δεδομένων και Τεχνικές ΠρογραμματισμούΚώστας Χατζηκοκολάκης

Weighted graphs

- Graphs with numbers, called **weights**, attached to each edge
 - Often restricted to **non-negative**
- Directed or undirected
- Examples

1

- **Distance** between cities
- **Cost** of flight between airports
- **Time** to send a message between routers

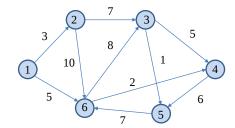
Weighted graphs

• Adjacency matrix representation

$$T[i,j] = egin{cases} w_{i,j} & ext{if } i,j ext{ are connected} \ \infty & ext{if } i
eq j ext{ are not connected} \ 0 & ext{if } i=j \end{cases}$$

• Similarly for adjacency lists

Example weighted graph



Example weighted graph

	1	2	3	4	5	6
1	0	3	∞	∞	∞	5
2	∞	0	7	∞	∞	10
3	∞	∞	0	5	1	∞
4	∞	∞	∞	0	6	∞
5	∞	∞	∞	∞	0	7
6	∞	∞	8	2	∞	0

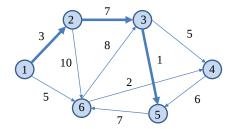
Adjacency matrix

Shortest paths

- The **length** of a path is the **sum of the weights** of its edges
- Very common problem
 - find the **shortest path** from s to d
- Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - ...

5

Shortest path from vertex 1 to vertex 5



Shortest path problem

Two main variants:

- Single source \boldsymbol{s}
 - Find the shortest path from s to each node
 - **Dijkstra's** algorithm
 - Only for **non-negative** weights (important!)
- All-pairs
 - Find the shortest path between all pairs s,d
 - Floyd-Warshall algorithm
 - Any weights

Dijkstra's algorithm

Main ideas:

- Keep a set \boldsymbol{W} of **visited** nodes
 - Start with $W=\{s\}$ (or $W=\{\}$)
- Keep a matrix $\Delta[u]$
 - Minimum distance from s to u passing only through W
 - Start with $\Delta[u]=T[s,u]$ (or $\Delta[s]=0,\Delta[u]=\infty$)
- ullet At each step we **enlarge** W by adding a **new vertex** $w
 ot\in W$
 - w is the one with $oldsymbol{\mathsf{minumum}} \Delta[w]$

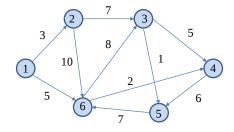
Dijkstra's algorithm

Main ideas:

9

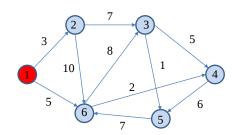
- Adding w to W might affect $\Delta[u]$
 - For some **neighbour** u of w
- ullet We might now have a **shorter** path to u **passing through** w
 - Of the form $s o \ldots o w o u$
 - If $\Delta[u] > \Delta[w] + T[w,u]$
- In this case we update Δ
 - $\Delta[u] = \Delta[w] + T[w,u]$

Example graph



Expanding the vertex set w in stages

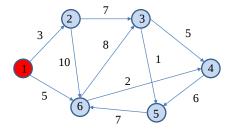
Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5



Expanding the vertex set w in stages

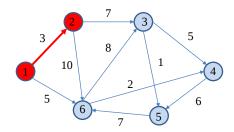
W=2 is chosen for the second stage.

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5



Expanding the vertex set w in stages

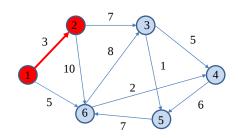
Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5



Expanding the vertex set w in stages

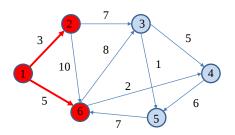
W=6 is chosen for the third stage.

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5



Expanding the vertex set w in stages

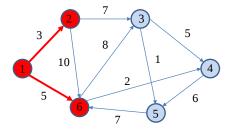
Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5



Expanding the vertex set w in stages

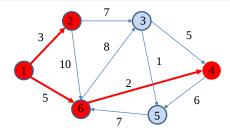
W=4 is chosen for the fourth stage.

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5



Expanding the vertex set w in stages

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5
4	{1,2,6,4}	{3,5}	4	7	0	3	10	7	13	5

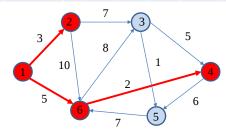


Expanding the vertex set w in stages

W=3 is chosen for the fifth stage.

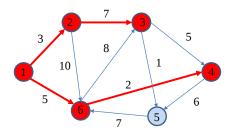
Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5
4	{1,2,6,4}	{3,5}	4	7	0	3	10	7	13	5

17



Expanding the vertex set w in stages

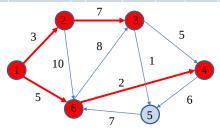
Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5
4	{1,2,6,4}	{3,5}	4	7	0	3	10	7	13	5
5	{1,2,6,4,3}	{5}	3	10	0	3	10	7	11	5



Expanding the vertex set w in stages

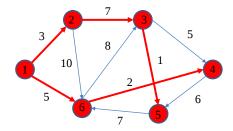
W=5 is chosen for the sixth stage.

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5
4	{1,2,6,4}	{3,5}	4	7	0	3	10	7	13	5
5	{1,2,6,4,3}	{5}	3	10	0	3	10	7	11	5



Expanding the vertex set w in stages

Stage	W	V-W	w	Δ(w)	Δ(1)	Δ(2)	Δ(3)	Δ(4)	Δ(5)	Δ(6)
Start	{1}	{2,3,4,5,6}	-	-	0	3	∞	∞	∞	5
2	{1,2}	{3,4,5,6}	2	3	0	3	10	∞	∞	5
3	{1,2,6}	{3,4,5}	6	5	0	3	10	7	∞	5
4	{1,2,6,4}	{3,5}	4	7	0	3	10	7	13	5
5	{1,2,6,4,3}	{5}	3	10	0	3	10	7	11	5
6	{1,2,6,4,3,5}	{}	5	11	0	3	10	7	11	5



Dijkstra's algorithm in pseudocode

```
// Δεδομένα
src : αρχικός κόμβος

dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο ν

W[u] : 1 αν ο u είναι στο σύνολο W, 0 διαφορετικά

dist[u] : ο πίνακας Δ

prev[u] : ο προηγούμενος του ν στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})

for each vertex u in Graph
   dist[u] = INT_MAX // infinity
   prev[u] = NULL
   W[u] = 0

dist[src] = 0
```

Dijkstra's algorithm in pseudocode

```
// Κυρίως αλγόριθμος
while true
    w = vertex with minimum dist[w], among those with W[w] = 0
    W[w] = 1
    if w == dest
        // optimal cost = dist[dest]
        // optimal path = dest <- prev[dest] <- ... <- src (inverse)</pre>
    for each neighbor u of w
        if W[u] == 1
            continue
        alt = dist[w] + weight(w, u)
                                         // κόστος του src -> ... -> w
        if alt < dist[u]</pre>
                                         // καλύτερο από πριν, update
            dist[u] = alt
            prev[u] = w
```

Using a priority queue

- Finding the $w \not\in W$ with **minumum** $\Delta[w]$ is slow
 - O(n) time
- But we can use a **priority queue** for this!
 - We only keep vertices $w \not\in W$ in the queue
 - They are compared based on their $\Delta[w]$ (each w has "priority" $\Delta[w]$)
- Careful when $\Delta[w]$ is modified!
 - Either use a priority queue that allows **updates**
 - Or insert multiple copies of each w with ${f different\ priorities}$
 - \circ the queue might contain **already visited** vertices: ignore them

Dijkstra's algorithm with priority queue

```
// Δεδομένα
src : αρχικός κόμβος

dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο u

W[u] : 1 αν ο ν είναι στο σύνολο W, Θ διαφορετικά

dist[u] : ο πίνακας Δ

prev[u] : ο προηγούμενος του ν στο βέλτιστο μονοπάτι

pq : Priority queue, εισάγουμε tuples {u, dist[u]}

συγκρίνονται με βάση το dist[u]

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})

prev[src] = NULL

dist[src] = Θ

pqueue_insert(pq, {src,θ}) // dist[src] = Θ
```

Dijkstra's algorithm with priority queue

```
// Κυρίως αλγόριθμος
while pg is not empty
    w = pqueue_max(pq) // w with minimal dist[u]
    pqueue_remove_max(pq)
                        // το w μπορεί να υπάρχει πολλές φορές στην ο
    if exists(W[w])
                        // δεν κάνουμε replace), και να είναι ήδη vis
        continue
    W[w] = 1
    if w == dest
                        // optimal cost/path same as before
        stop
    for each neighbor u of w
        if exists(W[u])
            continue
       alt = dist[w] + weight(w,u) // cost \ of \ src -> ... -> w -> u
       if !exists(dist[u]) OR alt < dist[u]</pre>
            dist[u] = alt
            prev[u] = w
            pqueue_insert(pq, {u,alt}) // προαιρετικά: replace αν υπ
stop // pg άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι
```

Notation

ullet s
ightarrow d

- Direct step step from s to d
- $s \stackrel{W}{\longrightarrow} d$
 - Multiple steps $s
 ightarrow \ldots
 ightarrow d$
 - All intermediate steps belong to the set $W\subseteq V$
- $s \stackrel{W}{\Longrightarrow} d$
 - $^{ ext{-}}$ Shortest path among all $s \overset{W}{\longrightarrow} d$
 - So $s \stackrel{V}{\Longrightarrow} d$ is the overall shortest one

Proof of correctness

- We need to prove that $\Delta[u]$ is the **minimum distance to** u
 - **after** the algorithm finishes
- But it's much easier to reason **step by step**
 - we need a property that holds at every step
 - this is called an **invariant** (property that never changes)

Proof of correctness

Invariant of Dijkstra's algorithm

- $\Delta[u]$ is the cost of the shortest path **passing only through** W
- And the shortest **overall** when $u \in W$

Formally:

- 1. For all $u \in V$ the path $s \stackrel{W}{\Longrightarrow} u$ has $\cosh \Delta[u]$
- 2. For all $u \in W$ the path $s \stackrel{V}{\Longrightarrow} u$ has $\mathrm{cost}\,\Delta[u]$

Proof: **induction** on the **size of** W, for both (1), (2) together

Proof of correctness

Base case $W=\{s\}$

- ullet Trivial, the only path $s \stackrel{W}{\longrightarrow} u$ is the direct one $s \rightarrow u$
- For (1): its cost is exactly $T[s,u]=\Delta[u]$
 - initial value of $\Delta[u]$
- For (2): the only $u \in W$ is s itself

Proof of correctness

Inductive case

- Assume |W|=k and (1),(2) hold
- The algorithm
 - Updates W , adding a new vertex w
 otin W
 - Updates $\Delta[u]$ for all neighbours u of w
- Let W', Δ' be the values **after** the update
- Show that (1),(2) still hold for W',Δ'

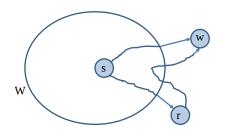
Proof of correctness

We start showing that (2) still holds for W', Δ'

- ullet The interesting vertex is the w we just added
 - Vertices u
 eq w are trivial from the induction hypothesis
- Show: $s \stackrel{V}{\Longrightarrow} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - $^{ ext{-}}$ We already know that $s \stackrel{W}{\Longrightarrow} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is **no better** path **outside** W

Proof of correctness

- ullet Assuming such path exists, let r be its **first** vertex outside W
 - $^ ext{-}$ So the path $s \stackrel{W}{\Longrightarrow} r \stackrel{V}{\Longrightarrow} w$ has cost $c < \Delta[w]$
 - So the path $s \stackrel{W}{\Longrightarrow} r$ has cost at most $c < \Delta[w]$ (no negative weights!)
 - So $\Delta[r] < \Delta[w]$
- Impossible! We chose w to be the one with min $\Delta[w]$



Proof of correctness

It remains to show (1) for W', Δ'

- ullet Take some arbitrary u
 - Let c be the cost of $s \stackrel{W'}{\Longrightarrow} u$
 - Show: $c=\Delta'[u]$
- ullet Three cases for the optimal path $s \stackrel{W'}{\Longrightarrow} u$
- ullet Case 1: the path does not pass through w
 - So it is of the form $s \stackrel{W}{\Longrightarrow} u$
 - This path has cost $\Delta[u]$ (induction hypothesis)
 - No update: Δ ' $[u] = \Delta[u] = c$

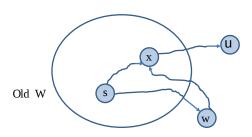
Proof of correctness

• Case 2: w is right before u

- $^{ ext{-}}$ So the path is of the form $s \overset{W}{\Longrightarrow} w o u$
- $^{ ext{-}}$ The cost of $s \overset{W}{\Longrightarrow} w$ is $\Delta[w]$ (induction hypothesis)
- So $c=\Delta[w]+T[w,u]$
- So the algorithm will set Δ ' $[u]=\Delta[w]+T[w,u]$ when updating the neighbours of w
- So $c=\Delta '[u]$

Proof of correctness

- Case 3: some other x appears after w in the path
 - $^{ ext{-}}$ So the path is of the form $s \stackrel{W}{\Longrightarrow} w o x \stackrel{W}{\Longrightarrow} u$
 - But the path $s \stackrel{W}{\Longrightarrow} w \to x$ is no shorter than $s \stackrel{W}{\Longrightarrow} x$
 - \circ From the induction hypothesis for $x \in W$
 - So $s \stackrel{W}{\Longrightarrow} x \to u$ is also optimal, reducing to case 1!



Complexity

Without a priority queue:

- Initialization stage: loop over vectices: O(n)
- ullet The while-loop adds one vertex every time: n iterations
- Finding the new vertex loops over vertices: O(n)
 - same for updating the neighbours
- So total $O(n^2)$ time

Complexity

With a priority queue:

- Initialization stage: loop over vectices, so O(n)
- Count the number of **updates** (steps in the **inner** loop)
 - Once for every neighbour of every node: e total
 - Each update is $O(\log n)$ (at most n elements in the queue)
- Total $O(e \log n)$
 - Assuming a connected graph $(e \geq n)$
 - And an implementation using adjacency lists
- Only good for **sparse** graphs!
 - But $O(n\log n)$ can be hugely better than $O(n^2)$

The all-pairs shortest path problem

- Find the shortest path between all pairs s,d
- Floyd-Warshall algorithm
- Any weights

- Even negative
- But no **negative loops** (why?)

The all-pairs shortest path problem

Main idea

- At each step we compute the shortest path through a **subset of vertices**
 - Similarly to W in Dijkstra
 - But now the set at step k is $W_k = \{1, \dots, k\}$
 - Vectices are numbered in any order
- ullet Step k: the cost of $i \stackrel{W_k}{\Longrightarrow} j$ is $A_k[i,j]$
 - Similar to Δ in Dijstra (but for all **pairs** i,j of nodes)

Floyd-Warshall algorithm

- The algorithm at each step computes A_k from A_{k-1}
- Initial step k=0

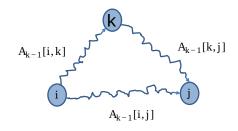
41

- Start with $A_0[i,j] = T[i,j]$
- Only direct paths are allowed

Floyd-Warshall algorithm

k-th iteration: the optimal $i \stackrel{W_k}{\Longrightarrow} j$ either **passes thorugh** k or not.

$$A_k[i,j] = \min egin{cases} A_{k-1}[i,j] \ A_{k-1}[i,k] + A_{k-1}[k,j] \end{cases}$$



Floyd-Warshall algorithm in pseudocode

A is the **current** A_k at every step k.

Complexity

- ullet Three simple loops of n steps
- So $O(n^3)$
- Not better than n executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for **negative** weights

Readings

- T. A. Standish. *Data Structures* , *Algorithms and Software Principles in C.* Chapter 10
- A. V. Aho, J. E. Hopcroft and J. D. Ullman. *Data Structures and Algorithms*. Chapters 6 and 7